Traffic controller

ctrenit will have 2 input (clock enable) 3 ouputs $\left(R, G, B\right.$ lines for $\log \left[t_{s}\right)$
module TrenFFic
input Elk, ene, no need for wire here, it's input clii, enc, the default output reg R, G, Y)j
can put type dedenation here need 3 timers. Lets assume $c l k$ has $f=1 k \not t z$ so period $T=1 \mathrm{~ms}$
want G,R lights on for 30 s

$$
y \because \quad \therefore \cdot 2 s
$$

fo $6 R, 303$ at lis $/$ tick $=30 \mathrm{k}$ ticks need register that can count to 30k for 15 bits, $2^{15}=32768$
for $Y, 23 \Rightarrow 2 k$ ticks so meed 11 bits: $2^{\prime \prime}=2048$
decimal $30,000=$ Hex $753 \phi \Rightarrow 15^{\prime} h 753 \phi$
decimal $2,000=$ Hex $7 D \phi \Rightarrow 11 / h 7 D \phi$
Counters: *bits $\quad h \Rightarrow$ hex
neg $[14: 0] r T_{j} g^{T} j$
' $d \Rightarrow$ decimal
$\operatorname{reg}[10: 0] y T_{j}$
then a done line for each timer wire $r D, g D, y D j$
assign $r D=\left(r T==^{\prime} d 30000\right)_{j}^{\text {parentheses }}$ optional
assign $g D=\left(g T=={ }^{\prime} d 30000\right)_{j}$
asign y $D=\left(y T==1 d_{2000}\right) j$
counters
always θ (posedge $c \mid k$) begin
if (R) $r T<=r T+i j$
else $r T 2=0 ;$ (don't need 'do0000) if $(G) g T 2=g T+1 ;$
else $g T 2=0 ;$
if (Y) y $T \ll y T+l_{j}$
else $J^{T} L=0_{j}$
end
next comes state machine $\Rightarrow 3$ states RED, GREEN, YELLOW parameter $[1: 0]$ RED $=0, G R E E N=1$, $Y E L Z O W=2$;

2 bits to hold numbers $0,1,2$
FSM has 3 states so need 2-bit state bus reg $[1: 0]$ states
always (©) (posedge click) begin
if (ina) begin
case (state)
RED: begin
re

$$
\left.\begin{array}{l}
R<=1 ; \\
G<=0 ; \\
y<=0 ;
\end{array}\right\} \text { specify every output }
$$

$$
\underset{\operatorname{lr} D}{O R}\{
$$

$\operatorname{lrD}\left\{\begin{array}{l}\text { if (rD) state }<=\text { GREE } \\ \text { else state } 2=\text { state; }\end{array}\right.$
end

GREEN: begin

$$
\begin{aligned}
& R<=0 ; \\
& G<=2 ; \\
& Y<=0 ;
\end{aligned}
$$

if (gD) state $\angle=$ YELLow;
else state <=GREEN
end
YGLLOW: begin

$$
\begin{aligned}
& R \angle=0 i \\
& G<=0 ; \\
& Y C=1 ;
\end{aligned}
$$

if (yD) state < RED; else state $\angle=$ YELL Dow; end
end
se begin
$R<=1 ;$
\leftarrow turns on ned light
$G<=0$;
note when en is assented,
Y $L=0$; red counter has been counting so will go to red state fo unknown
stat $\angle=R E D$; time, prob of endcase \leftarrow ends case switching end < ends always (6) -.. begin

Reset
above we used en signal
we could also use a reset signal that puts FSM into determined state
2 types of reset: synchronous $\}$ with respect asynchronous to clock
synchronous
always (01) (posedge elk) begin
if (reset) begin \longleftarrow only o posenge $d k$ do
state $\angle=R E D_{j}$
$R<=l_{j}$

$$
G \angle 20_{i}
$$

$$
y<=0_{j}
$$

end
else begin
case (state)
end case
end
asynckronous
always O (posedge clk or posente reset) not synch'd w/clock!

